16 research outputs found

    An efficient and modular route to sequence-defined polymers appended to DNA

    No full text
    Inspired by biological polymers, sequence-controlled synthetic polymers are highly promising materials that integrate the robustness of synthetic systems with the information-derived activity of biological counterparts. Polymer-biopolymer conjugates are often targeted to achieve this union; however, their synthesis remains challenging. We report a stepwise solid-phase approach for the generation of completely monodisperse and sequence-defined DNA-polymer conjugates using readily available reagents. These polymeric modifications to DNA display self-assembly and encapsulation behavior - as evidenced by HPLC, dynamic light scattering, and fluorescence studies - which is highly dependent on sequence order. The method is general and has the potential to make DNA-polymer conjugates and sequence-defined polymers widely available. Bilingual: A stepwise solid-phase synthesis approach provides easy access to sequence-controlled polymers attached to DNA. Polymers with the same molecular composition but different monomer patterns exhibit different amphiphilic self-assembly. The DNA component still retains base-pairing fidelity, and thus one molecule "speaks" two orthogonal and programmable assembly languages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    corecore